
Os fulerenos são a terceira forma mais estável do carbono, após o diamante e o grafite. Foram descobertos em 1985, tornando-se populares entre os químicos, tanto pela sua beleza estrutural quanto pela sua versatilidade para a síntese de novos compostos químicos. Foram chamados de "buckminsterfullerene" em homenagem ao arquiteto R. Buckminster Fuller que inventou a estrutura do domo geodésico, devido à semelhança, daí advindo a denominação antiga desta forma de carbono.
Fulerenos são uma vasta família de nanomoléculas superaromáticas, altamente simétricas, compostas de dezenas de átomos de carbono sp2-hibridizados. Sua estrutura é em geral esférica, formada por hexágonos interligados por pentágonos, sendo estes últimos responsáveis pela curvatura da molécula e, conseqüentemente, por sua forma tridimensional [Kroto et al. 1985]. O representante mais conhecido da família dos fulerenos sendo o C60 (com 60 carbonos), um icosaedro truncado de simetria Ih, e um diâmetro de aproximadamente 1 nm.
Aplicações
Devido à sua forma tridimensional, suas ligações insaturadas e sua estrutura eletrônica, os fulerenos apresentam propriedades físicas e químicas únicas que podem ser exploradas em várias áreas da bioquímica e da medicina.
Um de seus usos poderia ser o de transporte de medicamentos através do corpo humano, assim poder-se-ia evitar danos ao corpo através deste. Por exemplo em casos de câncer, em que um dos medicamentos destrói células, com uma leve preferência às cancerigenas. O problema é que por ser injetado e carregado pela corrente sangüínea, destrói células normais em seu caminho até as células-alvo, causando danos corporais. Poderia colocar-se o medicamento dentro de moléculas de fulereno e, quando ele chegasse ao local com células cancerígenas, abriria-se uma "porta" para que o medicamento fosse liberado apenas onde fosse necessário.
Dentre a vasta gama de aplicações biomédicas dos fulerenos [da Ros and Prato1999, Bosi et al. 2003] e referências contidas), destacam-se em desenvolvimento:
• Atividade antiviral, através da inibição do acesso de enzimas virais (e.g. proteases do vírus HIV) ao substrato pelo preenchimento da cavidade hidrofóbica dos sítios catalíticos, [Zhu et al. 2003];
• Atividade antioxidante e de armadilhas de radicais livres [Lai et al. 1997][Chiang et al. 1995][Chueu et al. 1997][Tsai et al. 1997];
• Terapia fotodinâmica através da produção de oxigênio singleto e outros radicais livres [Kamat et al. 1998][Kamat et al. 2000][Vileno et al. 2004];
• Foto-clivagem do DNA [Tokuyama et al. 1993][Higashi et al. 1997];
• Atividade antimicrobiana (versus Candida albicans, Bacillus subtilis, Escherichia coli, Mycobacterium avium, Staphylococcus spp., Streptococus spp., Klebsiella pneumoniae, Salmonella typhy) por intercalação e desestruturação de membranas celulares [da Ros et al. 1996][Mashino et al. 1999];
• Transporte de drogas de efeito radioterápico e contrastes para diagnóstico por imagem (Magnetic Resonance Imaging - MRI e tomografia por raios-X) [Bolskar et al. 2003][Cagle et al. 1999][Cagle et al. 1996][Braun and Rausch 2000][Thrash et al. 1999][Sueki et al. 2003].
Avanços recentes na química orgânica [Hirsh 1994] permitiram funcionalizar e adaptar estas moléculas para aplicações médicas, vencendo sua maior desvantagem: seu caráter apolar e sua repulsão natural por água. A hidrossolubilidade dos fulerenos foi um marco para a pesquisa e o desenvolvimento de aplicações biomédicas destas moléculas. Neste projeto nos concentraremos na investigação das propriedades antioxidantes e fotodinâmicas dos fulerenos e seus derivados hidrossolúveis, os fulerols.
Fontes: wikipedia,
eternoaprendizes
Startrekbrazil.blogspot.com sempre pensando em você!
Nenhum comentário:
Postar um comentário
Faça seu comentário: